of Research on Structure of Matter, Chinese Academy of Sciences, and the National Science Foundation of China.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1066). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius. Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lang, J.-P., Li, J.-G., Bao, S. \& Xin, X.-Q. (1993). Polyhedron, 12, 801-806.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Müller, A., Bögge, H. \& Koniger-Ahlborn, E. (1979). Z. Naturforsch Teil B, 34, 1698-1702.
Müller, A., Dartmann, D., Romer, C., Clegg, W. \& Sheldrick, G. M. (1981). Angew. Chem. Int. Ed. Engl. 20, 1060-1061.

Müller, A., Jaegermann, W. \& Hellmann, W. (1983). J. Mol. Struct. 100, 559-570.
Nicholson, J. R., Flood, A. C., Garner, C. D. \& Clegg, W. (1983). J. Chem. Soc. Chem. Commun. pp. 1179-1180.
Pruss, E. A., Snyder, B. S. \& Stacy, A. M. (1993). Angew. Chem. Int. Ed. Engl. 32, 256-257.
Stalick, J. K., Siedle, A. R., Mighell, A. D. \& Hubbard, C. R. (1979). J. Am. Chem. Soc. 101, 2903-2907.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1996). C52, 31-33

Bis(1,2-benzenediolato)dimethanolgermanium(IV)

Hung-Cheh Chiang,* Shin-Fung Hwang and Chuen-Her Ueng*
Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan

(Received 26 November 1993: accepted 6 June 1995)

Abstract

[$\left.\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right] .2 \mathrm{CH}_{3} \mathrm{OH}$ was prepared from germanium dioxide and catechol in refluxing $\mathrm{H}_{2} \mathrm{O}$ followed by refluxing the crude product in methanol; the product was identified by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. The complex has a slightly distorted octahedral structure with two methanol ligands in axial positions and two bidentate deprotonated catechols in equatorial positions. The $\mathrm{Ge}-\mathrm{O}$ bonds involving the methanol groups are longer than the $\mathrm{Ge}-\mathrm{O}$ bonds involving the catechol ligands.

Comment

Reports concerned with the structures of germanium complexes indicate that the coordination numbers of the central Ge atom are diverse (Yoder \& Zukerman, 1967; Sau \& Holmes, 1981; Day, Holmes, Sau \& Holmes, 1982; Lazraq, Couret, Declercq, Dubourg, Escudie \& Riviere-Bandet, 1990; Cereau, Chuit, Corriu \& Reye, 1991). Among these, Yoder \& Zukerman (1967) reported that the complex $\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$ has an octahedral structure and $\mathrm{Sau} \&$ Holmes (1981) showed that the complex $\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{X}\right]^{-}$is square pyramidal. These interesting findings have prompted our investigation of related derivatives with catechol, as a part of a general study of the structures of germanium complexes (Chiang, Lin \& Ueng, 1992; Chiang, Wang \& Ueng, 1993). Here we report the synthesis and structure of the title compound, (I).

An ORTEP diagram (Johnson, 1965) of the molecular structure is shown in Fig. 1. The complex has a slightly distorted octahedral structure with two methanol molecules in axial positions and two bidentate deprotonated catechol moieties in equatorial positions. The Ge atom lies on a crystallographic inversion centre, as found in $\left[\mathrm{Ge}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left\{\mathrm{OCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{COO}_{2}\right]\right.$ (Sterling, 1967) and $\left[\mathrm{Ge}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{COO}\right)_{2}\right]$ (Chiang, Wang \& Ueng, 1993). The 12 cis angles around the metal are in the range $89.3(1)-90.8(1)^{\circ}$ and the dihedral angles between two of the three mutually perpendicular planes are $90.06(5), 89.25(5)$ and $90.50(5)^{\circ}$. The $\mathrm{Ge}-\mathrm{O}$ bond lengths for the methanol group are longer than those for the catechol groups owing to the stronger coordination for the aryloxide ligands. The good planarity of the fivemembered chelate rings is indicated by the sum of the

Fig. 1. ORTEP (Johnson, 1965) drawing of the molecular structure of $\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$. Displacement ellipsoids are shown at the 50% probability level.
five bond angles $\left(539.9^{\circ}\right)$ and the χ^{2} value [107.7; χ^{2} is defined as $\Sigma \Delta d_{i}{ }^{2} /\left(\sigma x_{i}{ }^{2}+\sigma y_{i}{ }^{2}+\sigma z_{i}{ }^{2}\right)$, where $\Delta d_{i}{ }^{2}$ is the distance from the least-squares plane and $\sigma x_{i}, \sigma y_{i}$ and σz_{i} are standard deviations of coordinates x, y and z, respectively].

Experimental

The title compound was synthesized as follows. Catechol ($1.10 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added to an aqueous solution $\left(100 \mathrm{~cm}^{3}\right)$ of germanium dioxide $(0.52 \mathrm{~g}, 5.0 \mathrm{mmol})$ and the mixture was refluxed for 2 h . The solvent was removed under reduced pressure and the solid residue, after being washed twice with warm benzene, was refluxed in methanol for 1 h . Then the solvent was removed again and the crude product was recrystallized from methanol. The final product was obtained as colourless plate-like crystals [m.p. $460-461 \mathrm{~K}$ (dec.); yield $1.75 \mathrm{~g}(84 \%)$]. Crystals suitable for X-ray diffraction were prepared from methanol by evaporation. The composition of C, H and Ge found in elemental analysis is $46.67,5.16$ and 18.10%, respectively; $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{GeO}_{8}$ requires C 46.09 , H 5.76 and $\mathrm{Ge} 17.41 \%$. The IR spectrum (Jasco 700 spectrophotometer) in the $\mathrm{Ge}-\mathrm{O}$ stretching region included absorptions at 1246 and $1195(\mathrm{Ge}-\mathrm{OPh})$, and $667 \mathrm{~cm}^{-1}\left(\mathrm{Ge}-\mathrm{OCH}_{3}\right)$. A solution in $\mathrm{CD}_{3} \mathrm{OD}$ showed resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum (Jeol JNM-EX 400 MHz spectrophotometer, KBr pellet) at $\delta 6.62-6.79\left(8 \mathrm{H}, m, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and 3.38 p.p.m. $(6 \mathrm{H}, s$, $2 \mathrm{OCH}_{3}$), and in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 150.1,120.5$ and $113.9\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$, and 50.6 p.p.m. $\left(2 \mathrm{OCH}_{3}\right)$. Thermogravimetric analysis revealed that 15% of the weight, corresponding to two $\mathrm{CH}_{3} \mathrm{OH}$ molecules, is lost at 351 K and 15% of the weight is lost at 438 K , corresponding to another two $\mathrm{CH}_{3} \mathrm{OH}$ molecules. These data show that two of the methanol molecules are coordinated to the central Ge atom and are consistent with the observation of the ${ }^{1} \mathrm{H}$ NMR peak at $\delta 3.38$ p.p.m.

Crystal data

$\left[\mathrm{Ge}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$.-
$2 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=416.95$
Orthorhombic
Pbca
$a=7.5415(10) \AA$
$b=18.3253(24) \AA$
$c=13.382(3) \AA$
$V=1849.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (NRCVAX; Larson et al., 1990)
$T_{\text {min }}=0.802, T_{\text {max }}=$ 0.999

1207 measured reflections
1207 independent reflections

Refinement

Refinement on F
$R=0.035$
$w R=0.039$
$S=2.36$
892 reflections
116 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}(F)+0.0001 F^{2}\right]$
$\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

Extinction correction: secondary
Extinction coefficient: 1.8 (2)
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)
$(\Delta / \sigma)_{\text {max }}=0.003$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	\underline{y}	z	$B_{\text {eq }}$
Ge	0	0	0	2.30 (3)
O(1)	0.1129 (4)	-0.0179 (2)	-0.1203 (2)	2.8 (2)
O(2)	0.0359 (4)	-0.0949 (2)	0.0358 (2)	2.7 (1)
$\mathrm{O}(3)$	0.2320 (4)	0.0259 (2)	0.0621 (3)	3.2 (3)
O(4)	0.3857 (6)	-0.0473 (2)	0.1980 (3)	5.1 (2)
$\mathrm{C}(1)$	0.1741 (6)	-0.0883 (2)	-0.1210 (4)	2.5 (2)
C(2)	0.2726 (7)	-0.1175 (2)	-0.1972 (4)	3.0 (2)
$\mathrm{C}(3)$	0.3282 (7)	-0.1897 (3)	-0.1910 (4)	3.8 (3)
$\mathrm{C}(4)$	0.2847 (7)	-0.2309 (2)	-0.1081 (4)	3.7 (3)
C(5)	0.1854 (7)	-0.2015 (2)	-0.0304 (4)	3.1 (3)
$\mathrm{C}(6)$	0.1302 (6)	-0.1298 (3)	-0.0370 (4)	2.5 (2)
$\mathrm{C}(7)$	0.3482 (8)	0.0818 (3)	0.0277 (4)	4.9 (3)
$\mathrm{C}(8)$	0.3889 (9)	-0.1220 (3)	0.2052 (4)	5.0 (3)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$
$\mathrm{O}(1 a), \mathrm{O}(2 a)$ and $\mathrm{O}(3 a)$ are the centrosymmetric equivalents of $\mathrm{O}(1)$, $O(2)$ and $O(3)$, respectively.

$\mathrm{Ge}-\mathrm{O}(1)$	$1.850(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.370(7)$
$\mathrm{Ge}-\mathrm{O}(2)$	$1.823(3)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.398(7)$
$\mathrm{Ge}-\mathrm{O}(3)$	$1.994(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.391(7)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.370(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.381(8)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.366(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(7)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.425(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.380(6)$
$\mathrm{O}(1)-\mathrm{Ge}-\mathrm{O}(2)$	$89.5(1)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$115.3(4)$
$\mathrm{O}(1)-\mathrm{Ge}-\mathrm{O}(2) a)$	$90.5(1)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$121.0(4)$
$\mathrm{O}(1)-\mathrm{Ge}-\mathrm{O}(3)$	$90.1(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.4(5)$
$\mathrm{O}(1)-\mathrm{Ge}-\mathrm{O}(3 a)$	$90.0(1)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.8(5)$
$\mathrm{O}(2)-\mathrm{Ge}-\mathrm{O}(3)$	$89.3(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.4(4)$
$\mathrm{O}(2)-\mathrm{Ge}-\mathrm{O}(3 a)$	$90.8(1)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.9(4)$
$\mathrm{Ge}-\mathrm{O}(1)-\mathrm{C}(1)$	$109.2(3)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(1)$	$116.2(4)$
$\mathrm{Ge}-\mathrm{O}(2)-\mathrm{C}(6)$	$109.7(3)$	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$123.9(4)$
$\mathrm{Ge}-\mathrm{O}(3)-\mathrm{C}(7)$	$125.1(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.9(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$123.8(4)$		

Crystallographic computations were performed using the $N R$ CVAX package (Larson, Lee, Le Page, Webster, Charland \& Gabe, 1990).

The authors thank the National Science Council (NSC81-0208-M-003-07 and NSC81-0208-M00314) for financial support.

[^0]
References

Cereau, G., Chuit, C., Corrius, R. J. P. \& Reye, C. (1991). Organometallics, 10, 1510-1515.
Chiang, H.-C., Lin, S.-M. \& Ueng, C.-H. (1992). Acta Cryst. C48, 991-993.
Chiang, H.-C., Wang, M.-H. \& Ueng, C.-H. (1993). Acta Cryst. C49. 244-246.
Day, R. O., Holmes, J. M., Sau, A. C. \& Holmes, R. R. (1982). Inorg. Chem. 21, 281-286.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C., Lee, F. L., Le Page, Y., Webster, M., Charland, J.-P. \& Gabe, E. J. (1990). NRCVAX Crystal Structure System. Chemistry Division, NRC, Ottawa, Canada.
Lazraq, Z. M., Couret, C., Declercq, J.-P., Dubourg, A., Escudie, J. \& Reviere-Bandet, M. (1990). Organometallics, 9, 845-848.
Sau, A. C. \& Holmes, R. R. (1981). Inorg. Chem. 20, 4129-4135.
Sterling, C. (1967). J. Inorg. Nucl. Chem. 29, 1211-1215.
Yoder, C. M. S. \& Zukerman. J. J. (1967). Inorg. Chem. 6, 163-164.

Acta Cryst. (1996). C52, 33-35

The Intercalation Compound 1,4-Benzenediammonium Tetrachlorocadmate(II)

Qiang Ye, ${ }^{a}$ Qin-Jing Meng, ${ }^{a *}$ Xiao-Zeng You ${ }^{a}$ and Xiao-Ying Huang ${ }^{b}$
${ }^{a}$ Coordination Chernistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, People's Republic of China, and ${ }^{\text {b }}$ State Key Laboratory of Structure Chemistry, Fuzhou 350002, People's Republic of China

(Received 13 May 1994: accepted 13 June 1995)

Abstract

Crystals of 1,4-benzenediammonium tetrachlorocadmate(II), $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{CdCl}_{4}\right]$, contain two-dimensional anionic sheets in which each CdCl_{6} octahedron shares four corners with adjacent octahedra \{i.e. catena-poly[1,4-benzenediammonium dichlorocadmium-di- μ -chloro(2-)]\}. Layers of organic diammonium cations are intercalated between the metal-halogen sheets.

\section*{Comment}

Chemists have become increasingly involved in the synthesis and characterization of various low-dimensional solid-state chain or layer compounds because of their unusual physical properties, e.g. superconductivity. About twenty years ago many layer perovskites of general formulae $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{NH}_{3}\right)_{2} \mathrm{MCl}_{4}$ and $\left(\mathrm{NH}_{3} \mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{NH}_{3}\right) M \mathrm{Cl}_{4}(M=\mathrm{Cd}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Pt}, \mathrm{Pd})$ were investigated in view of their interesting thermal and magnetic properties (Arend \& Huber, 1978;

Needham \& Willett, 1984). The structures of these compounds are very similar to those of Langmuir-Blodgett films. In this paper, we report the crystal structure of such a compound, (I).

(I)

From Fig. 1 it can be seen that the title compound consists of two basic species: the CdCl_{6} polyhedron and the p-phenylene cation. In the CdCl_{6} layers (Fig. 2a), each Cd atom occupies the centre of a distorted but exactly centrosymmetric octahedron formed by four symmetry-related and almost coplanar $\mathrm{Cl}(1)$ atoms linking adjacent octahedra plus two axial $\mathrm{Cl}(2)$ ligands. In the CdCl_{6} layers the bridging $\mathrm{Cd}-\mathrm{Cl}(1)-\mathrm{Cd}$ bond angles are $153.61(4)^{\circ}$; the Cd atoms of the four closest octahedra and their associated bridging Cl^{-}ions form a pseudo-tetragonal arrangement which extends in two dimensions to form the CdCl_{4} sheet (Fig. 2b). The axial $\mathrm{Cl}(2)$ ligands protrude above and below the sheets. p-Phenylene diammonium cations are trapped between two adjacent CdCl_{6} layers and lie in the cavities formed by eight CdCl_{6} octahedra (four octahedra form the base and four form the top of the cavity). The axial $\mathrm{Cl}(2)$ ligands protrude from the CdCl_{4} sheets and thereby hinder the diffusion of the p-phenylene cations out of the cavities.

As can be seen from Fig. $2(b)$, in each p-phenylenediammonium layer adjacent aromatic rings are almost exactly normal to one another (dihedral angle 88.2°).

The structure of this layer perovskite is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds from both ends of the p-phenylenediammonium cations, which hold adjacent CdCl_{6} layers together. They are arranged so that one hydrogen bond $[\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}(1) 3.254$ (6) \AA] involves the corner-sharing $\mathrm{Cl}(1)$ atom whereas the other two from each $-\mathrm{NH}_{3}$ group $[\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}(2) 3.155$ (6) and 3.210 (5) \AA] are directed towards the axial Cl atoms of the CdCl_{6} octahedra.

Fig. 1. The numbering of the atoms of the title compound with 30% probability displacement ellipsoids. H atoms are omitted for clarity.

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1094). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

